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Detecting patterns is cumbersome!
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Intro

Challenges:

Many Time Series
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Are there better visualizations?
How do | navigate through large datasets?

Large Time Series
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Vibrations Periodic Time Series Visual Anomaly
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7 Content

This will be a quick overview

If you see something interesting ...

... you are very welcome to talk to me!
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Visual Fingerprints
for Vibration Signals




9 Vibration Fingerprints

Vibrationen messen

Motor Accelerometer Vibrationssignal
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10 Vibration Fingerprints

The Problem with Vibrations

Can you tell the difference?
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11 Vibration Fingerprints

A hidden signal

You cannot see the hidden signal with a line chart.
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Vibration Fingerprints

The Idea: Vibration — Point Cloud

1. Sliding Window View
2. Apply PCA
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Vibration Fingerprints

Noise is not exciting ...
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14 Vibration Fingerprints

... but oscillations result in circles!

Julian Rakuschek VICP;IETITUTE
27.10.2025 Qam COMPUTING



15 Vibration Fingerprints

Yes, this is also detectable with spectrograms, but ...
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... the TDE

Vibration Fingerprints

Is suitable to ga
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Vibration Fingerprints

Observing Wear
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Vibration Fingerprints

Published at EuroVis

EUROVIS 2025/ M. El-Assady, A. Ottley, and C. Tominski

Visual Fingerprints of Vibration Signals
Using Time Delay Embeddings

I. Rakuschek ! . A. Boesze 2, J. Schmidt 3 ,and T. Schreck'

! TU Gragz, Institute of Visual Computing, Austria

? Binder+Co AG, Austria
# TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria

‘Vibration Signal With Corresponding Time Delay Embeddings

0221104 18:55 20221104 18:57 20020104 18:58  2022-11.04 18001 2022-11.04 19002 2022.11-04 19:04 20221104 1906 20221104 19008 2022.11.04 19:10

Figure 1: Vibrarion measurements from a hydro power plant with the corresponding time delay embeddings per segment. The time delay
embedding visualizations evolve over time and can be used as a fingerprint to highlight significant changes in the vibration data.

Abstract
Most machines generate vibrations during operation, but effectively visualizing these vibrations is often a challenge, due to large
and high-resolution data. Line charis suffer from overplotiing, while frequency-domain analvsis requires specialized knowledge
in signal processing. We introduce a method that bridges the gap between time-domain and frequency-domain analysis: a
visual fingerprint computed through the time delay embedding of the vibration data. This fingerprint helps identify segments
exhibiting periodic behavior and can be used 1o cluster similar segments within a vibration signal. Addirionally, we demonstraie
its praciical application in predictive mainienance, showcasing its potential for real-world industrial use.

CCS Concepts

* Human-centered computing — Visualization techniques;
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19 Vibration Fingerprints

Analyzing Large Vibration Signals
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Visualizing Periodic
Time Series
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Passengers
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Periodic Time Series

Monthly Airline Passengers (1949 - 1960)
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22 Time Series Spiral

Segment by Year

Monthly Airline Passengers (1949 - 1960)
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We want to compare each springtime

Monthly Airline Passengers (1949 - 1960)

Time Series Spiral
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Time Series Spiral

Result: Subsequences
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Time Series Spiral

Comparison via Superposition
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Can we do better?
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26 Time Series Spiral

The Time Series Spiral

Each turn in the spiral
The following time series will The heatmap stripe is aligned corresponds to one period
along an Archimedean spiral

be visualized as a spiral

Transformation to a heatmap stripe

continuous

o EEPTD T
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27 Time Series Spiral

Complex Time Series are challenging!

Hourly Waterlevel of a Well

31
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waterlevel
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Time Series Spiral

No differences in sectors visible.
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29 Time Series Spiral

Visual Guidance can help

We need to navigate through a foggy data swamp.
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Time Series Spiral

Average Guidance

Average

27.75 I 27.85
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31 Time Series Spiral

Our Prototype
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Time Series Spiral

Another Example: Traffic

Average vehicle speed at a 9 Using the residuals of a regression
busy US highway model, a secondary pattern emerges

Averag
2291 I 4.26
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Anomaly Detection




34 AnoScout

Anomalies in time series (Selection)
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Anomaly = Unexpected Pattern
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Check every time series by hand?
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36 AnoScout

Let algorithms do the work!
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37 AnoScout

We would like to find these anomalies:

T T T T
0 200 400 600 800 1000

Apply unsupervised algorithms = no training required
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38 AnoScout

Unsupervised algorithms produce a scoring

Input Time Series

K-Means

Better for first anomaly

Local Outlier Factor

Better for second anomaly
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AnoScout

Ensemble to combine strengths

Input Time Series

Ensemble

Average of LOF and K-Means

Threshold

:M e w Everything above threshold = anomaly
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40 AnoScout

The Result are Interval Annotations for Anomalies

Not perfect, but close enough
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Coming back to this:
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AnoScout

We now ask:

1. Which anomalies commonly arise?
Can they be categorized?

2. Which strengths and weaknesses do
the algorithms exhibit?
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AnoScout

Introducing AnoScout

Compute Anomaly Scores

DWT_MLEAD
,,,,,

2 ¢
Window Size @
100 .
Algorithm Selection

v

Anomaly

Recommender
e .

e W AN i

Julian Rakuschek
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Algorithm selection adjusted based
on gained knoweldge

AnoScout = Playground to test
anomaly detection algorithms

Our contribution: A workflow to
explore anomalies
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blinking_short

blinking_long

clenching

DWT_MLEAD
DWT_MLEAD

Quantile Epsilon
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Start Level
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LOF
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N Neighbors
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Window Size
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Julian Rakuschek
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Algorithm
Selection

KMeansAD
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Window Size
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AnoScout

Extract Anomalies

| 1 | blinking_short
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Extract
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AnoScout

Each anomaly is represented through a card

Rating Slider to adjust
ranking of anomaly

l 5 Important i 0 Unrated {00
Location of
the anomaly lLucatinn in clenching (ch1): Location in blinking_shert (ch1):
within the _— —
time series DWT_MLEAD DWT_MLEAD - ONNNNNENENNNEEEND
KiMeansAD NN T T KMeansAD B
LOF T LOF

Scoring per algorithm
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45 AnoScout

Explore Anomalies

Projection Based

Julian Rakuschek VICP;ETITUTE
Ny /ISUAL

27.10.2025 COMPUTING



46 AnoScout

Step 3: Rank Anomalies
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47 AnoScout

This was all unsupervised.

What if | already know the expected behavior?
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48 AnoScout

Scenario: Manufacturing

We know about several But which kind of
types of normal behavior: anomalies can arise?

How can we configure a
classifier for that?
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AnoScout

AnoScout supports configuring a classifier




50 AnoScout

Explore Anomalies

Cluster Based
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AnoScout

Summary

Compute Anomaly Scores
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52 AnoScout

Future Work

e Algorithm Parameter Guidance
e Multivariate Time Series
e Progressive Exploring for Large Datasets
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Published at VINCI 2025

Coming Soon ...

AnoScout — Visual Exploration of Anomalies and Anomaly
Detection Algorithm Ensembles in Time Series Data

Julian Rakuschek Michael Leitner Jiirgen Bernard
julian.rakuschek@tugraz.at michaelleitner@tugraz.at bernard@ifiuzh.ch
Institute of Visual Computing Institute of Neural Engineering University of Ziirich
TU Graz TU Graz Switzerland
Austria Austria

Selina C. Wriessnegger Tobias Schreck
s.wriessnegger@tugraz.at tobias.schreck@tugraz.at
Institute of Neural Engineering Institute of Visual Computing
TU Graz TU Graz
Austria Austria

Compute Anomaly Scores

MW'\L.JMI\ ok

T T WL G LA N (T

Algorithm
Selection Detail Inspection

Anomaly

Recommender = n"‘"'“'!‘ ﬂIlSt!r

Algorithm selection adjusted
based on gained knoweldge

Figure 1: The workflow conceptualization structures the process of gaining insights into the diversity of anomalies in time
series data. The core components of AnoScout implement this workflow to help users identify which algorithms perform
appropriately for each anomaly pattern. Users first define a set of algorithms in the Algorithm Selection component. Afterwards,
each algorithm computes an anomaly scoring per time series, which is visualized as the ensemble of all algorithms in the Time
Series List view. The ensemble can be inspected for each time series in the Detail Inspection eomponent. Finally, users explore
anomaly pattern groups in the Anomaly Cluster view and may utilize the Anomaly Recommender to filter for specific anomaly
patterns.

Abstract
(@Ol

= o ‘With the growing abundance of time series data and anomaly de-

This work is licensed under a Creative Commons Altnibution £.0 International License. tection algurithms, El.‘lccling appmpriatc a]go rithm conﬁguratiuns
VINCI 2025, Linz, Austria y . . . N L
© 2025 Copyright held by the awnerfauthor(s). for a given dataset has become increasingly complex. We intro-
ACM ISBN 979-8-4007- 1845-8/25/12 duce AnoScout, a Visual Analytics approach to explore anomalies
hitps://doi.org/10.1145/3769534 3769577
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Open Source with Docker Setup

Features

AnoScout

A playground to explore suitable anomaly detection
algorithms for time series.

This website acts as supplemental material for the corresponding paper "AnoScout — Visual
Exploration of Ano and Anomaly Detection Algorithm Ensembles in Time Series Data”
submitted to VIN|

() Source Code @ Installation

Installation

Datasets

Contact

AnoScout
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