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Anomaly = Unexpected Pattern
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oScout

An

Check every time series by hand?
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5 AnoScout

Let algorithms do the work!
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6 AnoScout

We would like to find these anomalies:

T T T T
0 200 400 600 800 1000

Apply unsupervised algorithms = no training required
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7 AnoScout

Unsupervised algorithms produce a scoring

Input Time Series

K-Means

Better for first anomaly

Local Outlier Factor

Better for second anomaly
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8 AnoScout

Ensemble to combine strengths

Input Time Series

Ensemble

Average of LOF and K-Means

Threshold
:M e w Everything above threshold = anomaly
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9 AnoScout

The Result are Interval Annotations for Anomalies

Not perfect, but close enough
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10 AnoScout

Coming back to this: We now ask:
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mmmwmmmmmmmmmmm the algorithms exhibit?
WA P P 0 A A M N PATA A P SRS A Uy AV
WM N M AR A PR A P PAAW PNV e A A A FAAA
ARV VA P AR A A MG P P A AN AN N A ORI
NN M M A A VA A P A P A M A A T
W A A A A A A A P P S G S A A

Julian Rakuschek v-.c.;g TTTTTT
01.12.2025 N COMPUTING



11

AnoScout

Introducing AnoScout

Compute Anomaly Scores

Time Series List

Anomaly

Recommender

Explore Anomalies
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Anomaly Cluster
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Algorithm selection adjusted based
on gained knoweldge

AnoScout = Playground for
anomaly detection algorithms

Our contribution: A workflow to

explore anomalies
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12 AnoScout

Scenario: EEG Artifact Detection

Time Series
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blinking_short

blinking_long

clenching

DWT_MLEAD
DWT_MLEAD

Quantile Epsilon

0,04

Start Level
3

LOF
LOF

N Neighbors
20

Window Size

50
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Algorithm
Selection

KMeansAD
KMeansAD

N Clusters

20

Window Size

100

AnoScout

Extract Anomalies

| 1 | blinking_short
| B | blinking_long
| | clenching

Extract
Anomalies

2205

2100+
19954
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Algorithm Weights v

Post processed ensemble score:
Threshold & 0.178

Smoothing window size: 100
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AnoScout

Each anomaly is represented through a card

Rating Slider to adjust
ranking of anomaly

l 5 Important i 0 Unrated {00
Location of
the anomaly lLucatinn in clenching (ch1): Location in blinking_shert (ch1):
within the _— —
time series DWT_MLEAD DWT_MLEAD - ONNNNNENENNNEEEND
KiMeansAD NN T T KMeansAD B
LOF T LOF

Scoring per algorithm
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15 AnoScout

Explore Anomalies

Projection Based
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Step 3: Rank Anomalies
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This was all unsupervised.

What if | already know the expected behavior?
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18 AnoScout

Scenario: Manufacturing

We know about several But which kind of
types of normal behavior: anomalies can arise?

How can we configure a
classifier for that?
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AnoScout

AnoScout supports configuring a classifier
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Explore Anomalies

Cluster Based
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AnoScout

Summar

Compute Anomaly Scores
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22 AnoScout

Future Work

e Algorithm Parameter Guidance
e Multivariate Time Series
e Progressive Exploring for Large Datasets
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AnoScout — Visual Exploration of Anomalies and Anomaly Detection
Algorithm Ensembles in Time Series Data
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Julian Michael Jurgen Selina Tobias
Rakuschek Leitner Bernard Wriessnegger Schreck

Open Source

FFG

Forschung wirkt.

"7+ PRESENT

Slides



